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Abstract
We consider the Friedel sum rule (FSR) in the context of the scattering theory
for the Schrödinger operator −D2

x + V (x) on graphs made of one-dimensional
wires connected to external leads. We generalize the Smith formula for graphs.
We give several examples of graphs where the state counting method given by
the FSR does not work. The reason for the failure of the FSR to count the states
is the existence of states localized in the graph and not coupled to the leads,
which occurs if the spectrum is degenerate and the number of leads too small.

PACS numbers: 03.65.Nk, 72.10.Bg, 73.23.−b

1. Introduction

This article follows [1], in which we considered the scattering problem for the Schrödinger
operator on graphs. The graphs we are interested in are networks made of one-dimensional
wires identified with finite intervals of R and connected at vertices. The study of such systems
has been shown to be relevant in many contexts (for references see [1–7]). For example graphs
have been often considered as simple modellizations for the mesoscopic networks realized
experimentally. In this context scattering theory is a fundamental tool involved in the study
of transport properties and many other questions. Several works have been devoted to the
study of scattering theory on graphs, among which we can quote [1, 3, 8, 9]. In our work we
examine an important aspect of scattering theory, namely the relation between the scattering
and spectral properties that is established through the Friedel sum rule (FSR). The essence of
the FSR is to count the number of states in the scattering region, that is related to the phases of
the eigenvalues of the scattering matrix. The purpose of this article is to show that one must
be careful when applying the FSR to graphs since this formula does not hold for any graph,
one of the reasons for the breakdown being the occurrence of degeneracies in the spectrum of
the graph (this is a necessary but not a sufficient condition as we shall see).
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Here we consider the Schrödinger operator

H = −D2
x + V (x) (1)

where Dx = dx − iA(x) is the covariant derivative; the x coordinate lives on the graph G. We
briefly recall the notations adopted in previous works [1, 7, 10]. The graph G is made of B
one-dimensional wires connected at V vertices. We shall denote the vertices with Greek letters
(α, β, µ, . . .). The V ×V adjacency matrix aαβ (or connectivity matrix) is defined as aαβ = 1
if the vertices α and β are connected by a bond and aαβ = 0 otherwise. The coordination of
the vertex α (number of bonds issuing from the vertex) is therefore mα = ∑

β aαβ . The bond
between the vertices α and β will be designated with parentheses: (αβ). We also introduce
the notion of arc, which is an oriented bond. Each bond (αβ) is associated with two arcs: αβ
and βα. The arcs are labelled with Roman letters (i, j, . . .) and we denote the reversed arc of
i with a bar: ī.

The coordinate xαβ on the bond (αβ) of length lαβ belongs to the interval: xαβ ∈ [0, lαβ]
where lαβ is the length of the bond (αβ) (note that by definition xβα = lαβ − xαβ).

The Schrödinger operator acts on scalar functions ψ(x) living on G that are represented
by a set of B components ψ(αβ)(xαβ) satisfying appropriate boundary conditions at the
vertices [2, 11].

(i) Continuity

ψ(αβi)(xαβi = 0) = ψα for i = 1, . . . , mα (2)

{βi / i = 1, . . . , mα} is the set of vertices that are neighbours of the vertex α; the wavefunction
at the vertex is ψα .

(ii) A second condition sufficient to ensure current conservation (i.e. unitarity of the
scattering matrix) is∑

β

aαβ Dxαβψ(αβ)(xαβ = 0) = λαψα, (3)

where λα is a real parameter. Due to the presence of the connectivity matrix aαβ , the sum runs
over all neighbouring vertices linked with vertex α.

Note that the conservation of the current alone leads to more general boundary conditions
and does not require the continuity of the wavefunction at the nodes (see [5, 12] for example)

The magnetic flux along the bond is denoted by θαβ = ∫ β
α

dx A(x) = −θβα .
In a scattering situation the graph is connected to the exterior by leads plugged in on

vertices (we designate by ‘graph’ the compact part that does not include the leads). We call L
the number of leads through which some plane wave is injected. The quantity of interest is the
on-shell scattering matrix �, which is an L × L matrix that relates the incoming amplitudes
in the L channels to the outgoing ones. We denote by Aext

α (Bext
α ) the incoming (outgoing)

amplitude on the external lead connected at vertex α (i.e.Aext
α is the coefficient of a plane wave

e−ikx sent from the lead connected to vertex α). By definition

Bext = � Aext. (4)

The purpose of [1] was to formulate in general terms the scattering theory for the
Schrödinger operator, generalizing results known in the absence of potential V (x) (Laplace
operator) [2,4,13]. We have found various expressions of� for arbitrary graphs and related�
to matrices encoding information about the topology of the graph, the potential on the bonds
and the way the graph is connected to the leads. We recall here the main results of [1] that will
be necessary in the following discussion.
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1.1. The arc matrix formulation

We express here� on the energy shellE = k2 in terms of matrices that couple arcs. The graph
is described by 2B internal arcs. L external arcs are associated with the L leads. We introduce
the matrix R that encodes the information about the potential on the graph and couples the 2B
internal arcs of the graph:

Rij = ri δi,j + tī δī,j (5)

is the matrix element between arcs i and j . The potential on each bond (i) is characterized by
reflection and transmission coefficients: ri , ti for the injection of the wave in the direction of
arc i and rī , tī for the injection in the direction of the reversed arc ī. R is the bond scattering
matrix. If the potential vanishes (V (x) = 0) we have ri = 0 and ti = exp(ikli + iθi).

Next we introduce the vertex scattering matrix Q that encodes the information on the
topology of the graph and the way it is connected to leads:

Qij = 2

mα + iλα/k
− 1 if i = j (i issues from the vertex α) (6)

= 2

mα + iλα/k
if i �= j both issuing from the vertex α (7)

= 0 otherwise. (8)

This expression of the vertex scattering matrix is a consequence of the conditions (2) and
(3). We have also explained in [1] how this matrix is affected by the introduction of tunable
couplings to the leads. The (2B +L)×(2B +L)matrixQ couples the 2B internal arcs together
but also the latter to the L external arcs. If we separate Q into corresponding blocks:

Q =
(
Qint Q̃T

Q̃ Qext

)
(9)

then the scattering matrix is

� = Qext + Q̃ (R† −Qint)−1 Q̃T. (10)

The expression (10) generalizes the result known in the absence of potential [13].

1.2. The vertex matrix formulation

The previous approach is quite natural since we considered scattering matrices of the different
parts of the system but it has the disadvantage of dealing with rather large matrices. It is more
efficient to consider matrices that couple vertices. We define theL×V -matrixW that encodes
the information about the way the graph is connected to leads:

Wαβ = wα δαβ (11)

with α ∈ Vext and β ∈ V , where V = {1, . . . , V } is the set of vertices and Vext the set of
vertices connected to leads (Card(Vext) = L). The parameter wα ∈ R describes the coupling
between the graph and the lead at vertex α; its precise physical meaning is discussed in [1].
In the arc matrix formulation these parameters are introduced in the matrix Q [1]. We just
recall that wα = 1 corresponds to perfect coupling (the case considered above in section 1.1),
whereaswα = 0 corresponds to disconnecting the lead. The limitwα = ±∞ also corresponds
to disconnection of the lead; however, the current is not allowed to flow through the vertex in
this case and this way to disconnect the lead is equivalent to imposing a Dirichlet boundary at
the vertex (λα = ∞).
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We also introduce the matrix M that contains all the information on the isolated graph
(potential on the bond and topology):

Mαβ = δαβ

(
i
λα

k
+

∑
µ

aαµ
(1 − rαµ)(1 + rµα) + tαµ tµα
(1 + rαµ)(1 + rµα)− tαµ tµα

)
− aαβ

2 tαβ
(1 + rαβ)(1 + rβα)− tαβ tβα

.

(12)

Then, the scattering matrix reads

� = −1 + 2W(M +WTW)−1WT. (13)

These equations generalize the result known in the absence of potential [2, 4]. In this latter
case we recover from (12) the well known matrix

Mαβ = i δαβ
∑
µ

aαµcotg klαµ − aαβ
i eiθαβ

sin klαβ
. (14)

Some examples of application of these formulae are given in [1].
We describe the organization of this paper. Since there has recently been some confusion

in the literature about the content of the FSR, we think it is useful to spend some time by
reviewing some aspects around this relation, which will also be necessary for the following.
In section 3 we generalize the Smith formula for graphs. Then we provide in section 4 several
examples of violation of the FSR and explain the origin of this failure.

2. The Friedel sum rule

To be precise we consider the scattering theory for the Schrödinger equation on a three-
dimensional Euclidean manifold and restrict ourselves to the case of a rotational invariant
potential supposed to be concentrated in a sphere of radius R. A basis of eigenstates is given
by the partial wavesψl(r) Yml (θ, ϕ) (where Yml (θ, ϕ) are the spherical harmonics) whose radial
parts involve the phase shifts ηl(E): ψl(r) = (1/

√
πk)(1/r) sin(kr − lπ/2 + ηl) for r � R.

The energy of this eigenstate is E = k2. The Krein–Friedel relation relates the variation of
the density of states (DoS) to scattering properties. We introduce the local density of states
(LDoS) ρ(r;E) = 〈 r |δ(E −H)| r 〉. We denote by ρ0(r;E) the LDoS in the absence of the
potential. The relation reads∫

dr [ρ(r;E)− ρ0(r;E)] = 1

π

∞∑
l=0

(2l + 1)
dηl
dE
. (15)

Since the integral in the lhs runs over the whole space, the total DoS is diverging like the volume
of integration; however, the difference of the lhs is a finite quantity. The demonstration of (15)
in the one-dimensional case is recalled in appendix B.

Using the fact that e2iηl are the eigenvalues of the on-shell scattering matrix �̃ we can
write1∫

dr [ρ(r;E)− ρ0(r;E)] = 1

2iπ

d

dE
Tr{ln �̃(E)} = 1

2iπ

d

dE
ln det �̃(E), (16)

where the trace is computed on the energy shell E over channel indices.

1 The scattering matrix �̃ entering (16) is slightly different from the scattering matrix� we have introduced, the two
being related through a simple transformation. The phase shifts ηl(E) (phases of the eigenvalues e2iηl of �̃) encode
the effect of the scattering potential compared with the free case: in the absence of the potential, the phase shifts ηl
vanish. On the other hand the phases δl(E) of the eigenvalues eiδl of � are measured from the edge of the scattering
region: ψl(r) = (1/

√
πk)(1/r) sin(k(r − R)− lπ/2 + δl/2) for r � R.

Therefore we have δl = 2ηl +2kR. The relation between� and �̃ is also explained in detail in the one-dimensional
case in appendix B.
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It is convenient to introduce the Friedel phase defined as δf (E) = −i ln det�(E)with the
additional constraint to be a continuous function of the energy. It is the sum of the cumulative
phases of the eigenvalues eiδa of the scattering matrix �: δf (E) = ∑

a δa(E). The Friedel
phase counts the number of resonance peaks: if they are sufficiently narrow to be well separated,
in the neighbourhood of a resonance, the determinant behaves like

eiδf (E) = det�(E) ∝
E∼En

(
E − En − i)n
E − En + i)n

)dn
, (17)

up to a constant phase. En is the position of the resonance,)n its width and dn the degeneracy
of the state. This expression shows that the phase δf (E)makes a jump of 2πdn whenE crosses
the resonance.

The relation (15) was derived long ago by Beth and Uhlenbeck [14] in the context of
the study of a gas of interacting particles, where it is involved in the second virial coefficient
(related to the two-body problem). The generalization for a systematic expansion of the grand
potential was provided in [15]. The demonstration of the Krein–Friedel relation [16–19], also
called the FSR, is given in standard textbooks for rotational invariant potentials [20, 21]. It is
also worth mentioning the existence of a vast literature in mathematical physics dealing with
the scattering theory. Many references can be found in [22] which devotes its last chapter to
the study of the Krein spectral shift function (the Friedel phase) and trace formula. The matrix
−i�†d�/dE whose trace is computed in (16) is the matrix of Wigner time delays (note also
the existence of a classical formulation of the second virial coefficient in terms of classical time
delays in [23]). It is worth mentioning that (16) is exact, which is the beauty of this relation
(its validity is not restricted to a high-energy regime for example). Integrated over the interval
of energy below the Fermi energy, (15) and (16) give the accumulation of charge due to the
presence of the potential, to use the language of [16].

Instead of considering the variation of the DoS of the whole space, it is also possible
to study the LDoS integrated over the interacting region only. This quantity is also related
to scattering properties through the Smith formula [24], which defines the time delay. For a
rotational invariant potential the relation reads

2π
∫ R

0
dr r2|ψl(r)|2 = 2

dηl
dE

+
R

k
− 1

2E
sin(2kR + 2ηl − lπ) = dδl

dE
− 1

2E
sin(δl − lπ).

(18)

Note that this relation was also derived in [16] as an intermediate result for the demonstration
of (15). With a summation over the angular quantum numbers2, we obtain the LDoS integrated
over the sphere:∫

r<R

dr ρ(r;E) =
∞∑
l=0

(2l + 1)
∫ R

0
dr r2|ψl(r)|2

= 1

2π

∞∑
l=0

(2l + 1)

(
dδl
dE

− 1

2E
sin(δl − lπ)

)
. (19)

If the coupling between the scattering region (sphere of radiusR) and the exterior is adjustable,
this quantity corresponds to the DoS of the scattering region when it is isolated. If we are
interested in the Weyl contribution of the DoS of the scattering region we can forget the second
term of (19) and consider only the Weyl term of the Friedel phase.

2 The choice of normalization for the stationary scattering states ψE,l,m = ψl(r)Y
m
l (θ, ϕ) introduced above

corresponds to associating with these states a measure dE (it implies for example that
∫

dr ψ∗
E,l,mψE′,l′,m′ =

δl,l′δm,m′δ(E − E′)).
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Due to the central position of the scattering approach in mesoscopic physics, the FSR plays
an important role in the study of many physical quantities: for example the FSR allows us to
relate the persistent current to scattering properties [25] and is also involved in electrochemical
capacitance [26, 27]. A local formulation was also developed in [26, 28] to relate the LDoS
to scattering properties (a general discussion of the role of the local FSR is provided in [29]).
Since graphs are widely used to model mesoscopic networks they have been considered to
apply concepts involving the FSR, as in [25] for the persistent current in a loop connected to
one lead, or in the recent work [30], in which graphs provided examples to illustrate a general
discussion about a subtle point related to phases.

Recently there has been some confusion about the FSR in [31]. Starting from a
misinterpretation of the FSR, these authors claimed that the relation does not hold in the
one-dimensional case if the potential is made of two δ peaks, which is not true. We repeat
that the general demonstration of (16) in [15] covers the one-dimensional situation. The one-
dimensional case is reviewed in detail in appendix B, where we consider as an example the
case of one δ peak (it is not difficult to check that the FSR works perfectly well, as it should,
for two δ peaks, a little exercise following the same lines).

The FSR has been proven in arbitrary dimension; however, it has not been demonstrated
for graphs which are intermediate objects between one-dimensional and higher-dimensional
systems. Then it is important to clarify some points in this context. The FSR (15), (16) counts
the variation of the DoS due to a scattering potential. The Smith relation (19) measures the
LDoS integrated in the scattering region. Both are based on the idea of counting the number of
states of the scattering region by counting the resonance peaks of the phase shifts derivatives.
We shall show that this procedure is not always applicable for graphs: for example, in the case
of the complete graph that will be studied in detail below, some states of the isolated graph
are not manifested by a resonance peak or give rise to a resonance peak that does not carry the
correct spectral weight (the degeneracy of the level). To study this problem it will be sufficient
to consider the Weyl part of the Friedel phase to notice some discrepancy with the Weyl part of
the DoS of the graph. Before following this programme and to settle the discussion on more
precise grounds, we shall generalize the Smith formula (18) to the case of graphs, although it
does not always concern the DoS, as we shall see.

3. Generalization of the Smith relation

The Smith relation was derived for a one-dimensional system with one scattering channel [24]
(or rotational invariant potentials in three dimensions) and involves the Wigner time delay [32].
We generalize this relation to the case of a perfectly connected graph (wα = 1). The starting
point is to introduce

, = (Dxψ)
∗ dψ

dE
− ψ∗

(
Dx

dψ

dE

)
(20)

which satisfies the following relation:
d

dx
,(x) = |ψ(x)|2 (21)

for any solution ψ of the Schrödinger equation (−D2
x + V (x))ψ(x) = Eψ(x); we recall that

Dx = dx − iA(x) is the covariant derivative. Applied to a graph, the relation (21) should be
written for the B components of the wavefunction on the bonds (and also on the L leads).

We first derive two properties involving ,αβ(xαβ), the quantity (20) related to the
component of the wavefunction ψ(αβ)(xαβ) (we shall denote by ,lead µ(x) that associated
with the component ψlead µ(x) on the lead attached to the vertex µ). Obviously, we have
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,αβ(xαβ) = −,βα(xβα). Due to the conservation of the current, ensured by (3), the sum of
all ,µβ associated with the arcs issuing from the vertex µ and computed at the position of the
vertex (xµβ = 0) is zero:

∑
β

aµβ ,µβ(µ) + (WTW)µµ ,lead µ(µ) = 0. (22)

We have used the obvious notation ,µβ(µ) ≡ ,µβ(xµβ = 0). The second term is the
contribution of a lead, if one is plugged in at vertex µ (due to the definition of W , we recall
that (WTW)µµ = 1 if a lead issues from µ and 0 otherwise). The second useful property is
obtained by integration of (21) on the bond (µβ):

∫ lµβ

0
dx |ψ(µβ)(x)|2 = −,µβ(µ)−,βµ(β). (23)

We now consider the stationary scattering state ψ(α)(x) of energy E = k2, associated
with the injection of a plane wave from the lead connected at vertex α. The construction of
these eigenstates is briefly recalled in appendix A (see [1]). From the expression (47) of the
wavefunction on the lead we see that

,
(α)

lead µ(µ) = −2ik �∗
µα

d�µα
dE

− i

2k
(δµα +�∗

µα)(−δµα +�µα). (24)

We now compute the integral of |ψ(α)(x)|2 on the graph (the ‘graph’ refers to internal bonds):

∫
Graph

dx |ψ(α)(x)|2 =
∑
(µβ)

∫ lµβ

0
dx |ψ(α)(µβ)(x)|2 = −

∑
arc µν

,(α)µν (µ), (25)

where we have used (23). The summation
∑

(µβ) is over the B bonds of the graph, whereas
the last summation runs over the 2B internal arcs. We see that the contributions from the
arcs issuing from an internal vertex vanish due to (22). The contributions of the internal arcs
issuing from connected vertices can be replaced by the contributions of external leads due
to (22). Therefore we obtain

∫
Graph

dx |ψ(α)(x)|2 =
∑
µ

,
(α)

lead µ(µ) = −2ik

(
�† d�

dE

)
αα

− i

2k
(�αα −�∗

αα) (26)

where the sum over µ is obviously over the L connected vertices.
In order to associate a measure dE with the stationary scattering states, we change the

normalization. The scattering states (47), (50) are related to the new ones by ψ̃(α)E (x) =
(1/

√
4πk)ψ(α)(x). If we sum the contributions (26) of the L stationary scattering states of

energy E, we obtain

∑
α

∫
Graph

dx |ψ̃(α)E (x)|2 = 1

2iπ

(
Tr

{
�† d�

dE

}
+

1

4E
Tr

{
� −�†

})
(27)

which generalizes the Smith relation (18) to the case of graphs. The term −i Tr{�†d�/dE}
is the time delay.
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To compute the Friedel phase of a graph appearing in the above relation, it is useful to
note that3

det� = (−1)V−L det(WTW −M)

det(WTW +M)
. (28)

For one channel (one lead) we have � = eiδ , therefore we obtain∫
Graph

dx |ψ̃E(x)|2 = 1

2π

(
dδ

dE
+

1

2E
sin δ

)
, (29)

which would be the relation (18) obtained by Smith if the graph reduced to a line (one-
dimensional case with one channel). The different sign of the second term is only a matter of
definition of the phase shift δ, in the one-dimensional case, and δ0, in the l = 0 channel of the
three-dimensional case, which differ by π .

Case wα �= 1. When we introduce arbitrary couplings between the leads and the graph, the
application of formula (27) means that we are also taking into account the integral over the
bonds on which are the barriers characterized by the wα (see [1], where the introduction of
these parameters is explained in detail).

4. Violation of the Friedel sum rule for certain graphs

The idea of the FSR is to count the states in the scattering region by studying the Friedel
phase. We have seen that the Smith formula (18) relates the LDoS integrated over the
scattering region to the Friedel phase and we have found its generalization (27) for graphs.
We call N (E) = ∫ E

−∞ dE′ ∫
Graph dx ρ(x;E′) the integrated density of states (IDoS) of the

graph. If we are not interested in the details of the spectrum but only in the Weyl term of
the IDoS of the scattering region, and if we believe the FSR, the relation (19) shows that
NWeyl(E) � (1/2π)δf (E) up to some oscillatory part. As a matter of fact this is not always
true for graphs and we shall now give several examples where NWeyl(E) is not given by the
dominant contribution of δf (E).

All the examples we are going to consider are free graphs, with V (x) = 0, but the ideas
that will come out are not specific to free graphs. We recall that in the absence of a potential
we have4 NWeyl(E) = Lk/π , where L = 1

2

∑
α,β aαβlαβ is the total length of the graph. As we

shall see, one of the reasons for the violation of the FSR is the occurrence of degeneracies in
the spectrum. Graphs with symmetries present many degeneracies. This is why it is interesting
to start by studying the complete graph KV , which is the most symmetric simply connected
graph with V vertices.

4.1. The complete graph KV connected to one lead.

The graph KV is made of V vertices, each being connected to the others by bonds of same
length /. The matrix M takes a simple form (see equation (64) in appendix C).

3 The proof is easily achieved by considering the graph G′ related to the original graph G by attaching to each of the
V − L internal vertices of G (labelled for convenience with prime indices: α′, . . .) a lead with tunable coupling. If
these couplings are switched off (wα′ → 0), the V × V scattering matrix �′ of G′ is block diagonal with an L × L

block being the scattering matrix � of G, the other (V − L) × (V − L) block corresponding to the additional leads
being −1. Let us now compute det�′: for finite couplings wα′ , the matrix W ′ describing the coupling of G′ to the
V leads is square and possesses an inverse. It follows from (13) that �′ = W ′−1(W ′2 −M)(W ′2 +M)−1W ′. Then
det�′ = det(W ′2 − M)/ det(W ′2 + M). If the couplings to the additional leads now vanish, wα′ → 0, we have
det�′ = (−1)V−L det� and W ′2 = WTW .
4 The Weyl term appears in the trace formula originally derived by Roth [33] (see also [4, 7]).
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Figure 1. Complete graph K5 connected to one lead.

The graph is connected to one lead (figure 1) and the scattering matrix is characterized
by a unique phase: � = eiδf . Using (13) we recover after a little algebra the expression
[7, formula (119)]

cotg (δf /2) = cosϕ
cos k/ + cosϕ − 1

cos k/ + cosϕ
cotg (k//2), (30)

where k = √
E and cosϕ = 1/(V − 1). This expression shows that δf (k2) = 3k/ + (fluct.),

where (fluct.) represents a fluctuating term of order π , whereas the Weyl part of the IDoS is
NWeyl(E) = B/k/π = V (V − 1)k//2π , which clearly shows the discrepancy between N (E)
and δf (E)/2π .

A more detailed analysis of the position of the resonance peaks of dδf /dE shows that
the Friedel phase does not measure the degeneracies of the energies of the isolated graph (see
appendix C, where the spectrum ofKV is recalled), and moreover even misses some energies:
there is no resonance peak at k2+4n.

To understand in more general terms the origin of the failure of the FSR when only one
lead is plugged in on the graph, we consider the simple case of a graph with no potential
(V (x) = 0 and λα = 0) connected to only one external lead. The formula [7]

cotg (δf (E)/2) = −
√
E
SDir.(−E − i0+)

SNeu.(−E − i0+)
(31)

relates the phase shift δf (E) to the ratio of two spectral determinants. On the one hand
SDir.(γ ) is the spectral determinant det(−D2

x+γ ) calculated with a Dirichlet boundary condition
(λα0 = ∞) at the vertex α0 where the lead is plugged in, and Neumann boundary conditions at
all other vertices (λα = 0). On the other hand SNeu.(γ ) is calculated with Neumann boundary
conditions at all vertices. The sum rule means that each state in the isolated graph is associated
with a jump of 2π of the phase δf . Due to (31) we see that a jump of 2π occurs when the
expression (31) diverges. Then we identify two reasons why the FSR fails: (i) if the spectrum
of the graph is degenerate and (ii) if SDir.(γ ) vanishes for the same energy as SNeu.(γ ), then (31)
diverges a number of times which is not related to the number of states in the graph.

4.2. The complete graph KV connected to V leads

To convince ourselves that the breakdown of the Krein–Friedel relation is not specific to graphs
connected to one lead only, we consider now the case whereKV is attached toV leads connected
to each vertex (figure 2).

If all the vertices of the graph are connected to leads (L = V ), the matrix W is square.
The determinant (28) is eiδf (E) = det(W 2 −M)/ det(W 2 + M). For simplicity we consider
the case of equal couplings: w1 = w2 = · · · = wV = w. Using (64) we obtain

eiδf (k2) = (−1)V
sin(k//2)− iw2 cosϕ cos(k//2)

sin(k//2) + iw2 cosϕ cos(k//2)

(
cos k/ + cosϕ + iw2 cosϕ sin k/

cos k/ + cosϕ − iw2 cosϕ sin k/

)V−1

.

(32)
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Figure 2. Complete graph K7 connected to seven leads. The small boxes represent the couplings
characterized by the parameter w [1].

This expression shows that δf (k2) = (2V − 1)k/ + (fluct.), which disagrees once again with
NWeyl(E) = V (V − 1)k//2π .

It is interesting to provide a more detailed analysis by studying the behaviour of the
Friedel phase in the neighbourhood of the energies of the graph (the spectrum is recalled in
appendix C). We consider the limitw → 0 for which the resonance profile of dδf /dE emerges
clearly.

• Near the first energy level (for k ∼ k1) we see from (32) that eiδf ∝ [(k−k1 − i)k1)/(k−
k1 + i)k1)]V−1 with )k1/ = w2/(V − 1). The exponent is the degeneracy of the level,
which means that the resonance peak of dδf /dE has the correct spectral weight and counts
correctly the V − 1 states.

• In the neighbourhood of the second energy level (for k ∼ k2) dδf /dE is flat: δf is not
sensitive to the presence of states at this energy.

• The situation at k ∼ k3 is the same as that at k ∼ k1 (with )k3 = )k1).

• At k ∼ k4 we have eiδf ∝ (k− k4 − i)k4)/(k− k4 + i)k4) with)k4 = 2)k1: the Friedel
phase misses the degeneracy.

One may now ask why the Friedel phase sometimes misses some states and sometimes
does not. To answer this question we can study the structure of the wavefunctions of the
isolated graph (see appendix C). Whereas the wavefunction is finite at the nodes at energies
k1+2m where the Friedel phase is sensitive to the degeneracy, all the V (V − 3)/2 degenerate
wavefunctions vanish at all the nodes at energies k2+4m as well as at energies k4+4m, which
means that the wave sent from the lead does not enter the graph at these energies.

4.3. The ring connected with two leads

To understand better the remark that closed the previous subsection we consider next a simpler
case: a ring connected to two leads (figure 3). The arms of the ring are of lengths la and lb
with l = la + lb.

Let us first recall the spectrum of the isolated ring of perimeter l threatened by a
flux θ : the energies are Em(θ) = (2π/l)2(m − θ/2π)2 associated with wavefunctions
ϕm(x) = (1/

√
l)e2iπmx/l form ∈ Z. If θ = 0 the states ϕm and ϕ−m are degenerate. Therefore

we can introduce in this case a different basis: a symmetric function ϕ+
n = (ϕn + ϕ−n)/

√
2 =√

2/l cos(2πnx/l) with n ∈ N, and an antisymmetric one ϕ−
n = (ϕn − ϕ−n)/i

√
2 =√

2/l sin(2πnx/l) with n ∈ N
∗.
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θ
w1

w2

l a

lb

Figure 3. The ring connected to two leads and threatened by a flux θ . The two arms have lengths
la and lb . The parameters w1 and w2 allow us to tune the coupling of the ring.

We now consider the graph when it is coupled to two leads with coupling parameters w1

and w2 (see figure 3). The Friedel phase eiδf = det(W 2 −M)/ det(W 2 +M) is

eiδf = 2(cos θ − cos kl) + w2
1w

2
2 sin kla sin klb − i(w2

1 + w2
2) sin kl

2(cos θ − cos kl) + w2
1w

2
2 sin kla sin klb + i(w2

1 + w2
2) sin kl

(33)

(det(W 2 +M) was calculated in [1]). If θ �= 0 the spectrum is non-degenerate and δf counts
the states correctly. Now we focus on the degenerate case θ = 0 for which we have

tan(δf /2) = − (w2
1 + w2

2) sin kl

4 sin2(kl/2) + w2
1w

2
2 sin kla sin klb

. (34)

Each interval of width )k = 2π/l contains two states of the ring. Let us now examine under
what condition (34) counts these states correctly. We can identify the position of the resonances
with the value of k for which the denominator of (34) vanishes5. Then we distinguish two
different cases:

• la/ l is an irrational number. Then the denominator of (34) vanishes twice per interval
k ∈ [2mπ/l; 2(m + 1)π/l[, which means that δf counts the correct number of states.

• la/ l is a rational number: la/ l = p

2q with (p, q) ∈ N
2. If (q − p)(m + 1) is an integer

multiple of q, the denominator vanishes only once in [2mπ/l; 2(m+1)π/l[. The intervals
for which (q − p)(m + 1) is an integer multiple of q are those in which one of the two
degenerate wavefunctions ϕ+

m+1 and ϕ−
m+1 vanishes on the vertices where the leads are

plugged in.

4.4. The ring connected with one lead. Why cannot the lhs of (27) always be identified with
the DoS?

We have given a general argument to explain how the degeneracies of the spectrum lead to
a failure of the FSR; however, it is surprising that the quantity in the left-hand side of (27)
cannot always be identified with the DoS of the graph since the sum runs over the complete

5 The denominator is of the form

fa(x) = sin2(x/2) + b sin(ax) sin((1 − a)x) = (1 + b) sin2(x/2)− b sin2((1/2 − a)x), (35)

with a ∈]0; 1/2[ and b ∈]0; +∞[. We are interested in the number of zeros of fa(x) in the interval [2mπ; 2(m+ 1)π [.
We distinguish two cases:

• a is not a rational number (a /∈ Q). Since fa(2mπ) < 0 ∀m ∈ N and the amplitude of the first positive term in
the rhs of (35) is larger than the second, it follows that fa(x) = 0 has exactly two solutions in [2mπ; 2(m+1)π [.

• a ∈ Q : we write a = p/2q where (p, q) ∈ N2 with p < q. We have fa(2mπ) = −b sin2((q−p)mπ/q) � 0.

If (q − p)(m + 1) is not an integer multiple of q the interval [2mπ; 2(m + 1)π [ contains two solutions of
fa(x) = 0.

If (q − p)(m + 1) = rq with r ∈ N the interval contains only one solution of fa(x) = 0.
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w θ

Figure 4. The ring connected to one lead.

set of L stationary scattering states of energy E. This point needs clarification, that we shall
give now by studying again the case of the ring.

We consider the ring of figure 4 coupled to a lead and construct the stationary scattering
states (47), (50). The wavefunction on the lead is

ψ̃ lead
E (x) = 1√

4πk
(e−ikx + eikx+iδ), (36)

where the phase shift δ is [1]

cotg (δ/2) = w2 sin kl

2(cos θ − cos kl)
. (37)

On the ring (arc a) the wavefunction reads

ψ(a)(x) = ψ1
eiθx/l

sin kl
(sin k(l − x) + e−iθ sin kx) (38)

where

ψ1 = 1√
πk

w sin kl

w2 sin kl + 2i(cos kl − cos θ)
= 1

w
ψ̃ lead
E (0) (39)

is the wavefunction at the node.

• θ �= 0. We study the limit w → 0 of small coupling for which we expect to recover some
features of the isolated ring. In this case |ψ1| presents sharp peaks at the positions of the
energies of the isolated ring (given by k±

n l = ±θ + 2nπ ). These resonance contributions
will eventually give the main contributions to (27). Let us express the wavefunction in
the ring for k in the neighbourhood of a resonance. Expressions (38) and (39) give

ψ(a)(x) �
k∼k±

n

1√
πk

iw/2l

k − k±
n + iw2/2l

e∓2iπnx/l . (40)

Up to a normalization, we recover the wavefunctions of the isolated ring recalled in the
previous subsection. By integration in the ring we obtain∫ l

0
dx |ψ(a)(x)|2 �

k∼k±
n

1

2k

1

π

w2/2l

(k − k±
n )2 + (w2/2l)2

−→
w→0

1

2k
δ(k − k±

n ) = δ(E − [k±
n ]2),

(41)

which is the correct DoS of the isolated ring.
• θ = 0. If we now consider the degenerate case of zero flux, the resonance peaks are in
kn = 2nπ/l. The wavefunction in the ring near the resonance is

ψ(a)(x) �
k∼kn

1√
πk

iw/l

k − kn + iw2/l
cos(2nπx/l). (42)

In this case the scattering state only reproduces the symmetric wavefunction ϕ+
n (x) of the

isolated ring. It is now clear that the integration cannot give the DoS of the isolated ring:
indeed, ∫ l

0
dx |ψ(a)(x)|2 �

k∼kn

1

2k

1

π

w2/l

(k − kn)2 + (w2/l)2
−→
w→0

1

2k
δ(k − kn) (43)

misses the degeneracy 2 of the eigenstates.
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In the cases studied above the stationary scattering states, computed in the limit of a graph
weakly coupled to the leads (wα → 0), do not reproduce all the wavefunctions of the
isolated graph and the lhs of the formula (27) cannot be identified with the DoS of the
graph. In this sense the scattering states do not form a complete basis to describe the
Hilbert space of the graph.

5. Remark on free graphs connected to one lead

Note that for a free graph, i.e. with no potential and no magnetic flux, perfectly connected
(w = 1) to only one lead, we can prove with (31) that

δf (k2) �
k→0

2kL (44)

where L = 1
2

∑
α,β aαβlαβ is the total length of the graph. The proof is obtained by analysing

the behaviours of the two spectral determinants at small energy [7]. If the FSR fails, the total
length L of the free graph is not encoded in the Weyl part of δf (k2); however, L appears in
the low-energy behaviour of the phase shift. For example if we consider the complete graph
(figure 1), we have shown that δfWeyl = 3k/ and we can check on (30) that the low-energy
behaviour (k → 0) is δf � V (V − 1)k/ = 2kL.

6. Discussion

We have shown that the well known FSR, a state counting method from the scattering properties,
may be violated for certain graphs having degenerate spectra. This has been demonstrated
already at the level of the Weyl term of the DoS: we have studied several examples where a
discrepancy occurs between the Weyl term of the Dos of the isolated graph and the Weyl part
of the derivative of the Friedel phase (1/2π)dδf /dE = (1/2iπ) tr(�†d�/dE).

A way to understand the origin of the failure of the FSR is to compare the quantities
involved in the DoS and in the Friedel phase. The DoS of an isolated graph can be obtained
from the spectral determinant S(γ ) = ∏

n(γ +En) by making the substitution γ → −E− i0+.
The spectral determinant is proportional to the determinant of the matrixM introduced above:
S(γ ) ∝ detM(γ ) [6,7,10,12,34,35]. Adding a small imaginary part to the spectral parameterγ
produces a resonance structure in ∂γ ln S(γ ), each peak having a weight equal to the degeneracy
of the state. If we now consider the Friedel phase we note that the widths of the resonances are
obtained by adding to the anti-Hermitian matrixM(−E) a Hermitian matrixWTW : the Friedel
phase involves det(M(−E) +WTW). Comparing this latter determinant with the determinant
detM(−E − i0+) involved in the DoS, it is not surprising that the Friedel phase does not
produce the correct spectral weights since the ways the energies (zero of determinant) acquire
an imaginary part is different in the two cases.

Another way to understand the failure of the FSR for graphs is the following. For a
problem invariant under rotations in a d-dimensional space, the essence of the FSR is to count
the number of nodes of the wavefunction in the angular channel crossing a (d−1)-dimensional
sphere at infinity when the energy is varied. The number of states coincides with the number
of nodes, that is with the number of jumps of π of the phase shift ηl(E) of the partial wave
of orbital momentum l. On the other hand, a graph is connected to the exterior only through
leads plugged in at vertices. In a sense the Friedel phase counts the number of nodes of the
wavefunction ψk(x) that reach those vertices by varying k. The failure of the FSR is caused
when several nodes of ψk(x) reach at the same energy the same vertex from different bonds



3402 C Texier

issuing from this vertex (we can easily convince ourselves of this remark by considering the
ring connected to one lead studied above).

We can also provide a clear picture of the problem within the arc formulation introduced
in [1] and recalled in section 1. In the arc formulation, the wavefunction is described by a set
of amplitudes. Each arc i is associated with a coupleAi, Bi . We gather the internal amplitudes
in a vector Aint, the external amplitudes in a vector Aext and all amplitudes in a vector A. The
internal amplitudes of the graph are related through the bond scattering matrix: Aint = RB int.
All amplitudes are also related to each other by the vertex scattering matrix: B = QA. If we
eliminate B int we obtain

Q̃T Aext = (R† −Qint) Aint (45)

Bext = Q̃Aint +Qext Aext. (46)

In general det(R† −Qint) �= 0 whatever k is and at all energies of the continuous spectrum,
the stationary scattering states are the only solutions of the Schrödinger equation on the graph.
However, for certain graphs (in particular for those examined above), there exists a discrete
set of energies in the continuous spectrum for which det(R† − Qint) = 0. This means that
in addition to the scattering states we can construct at these particular energies solutions
such that Aext = Bext = 0 while the internal amplitudes satisfy (R† − Qint)Aint = 0 and
Q̃Aint = 0. These two last equations describe a solution localized in the graph and that does
not communicate with the leads. The stationary scattering states give the solutions of the
Schrödinger equation for the continuous spectrum apart for a discrete set of energies where
some additional states are localized in the graph and thus are not probed by scattering, leading
to the failure of the state counting method from the scattering.

The study of the various examples of section 4 leads us to make the following conjecture
for the ability of δf to count the states (at least at the level of the Weyl term): if there are
degenerate energies of degeneracies dn, the Friedel phase δf counts correctly the states of the
system if L � dn leads are plugged in at vertices in such a way that the wavefunction cannot
vanish at the positions of all these vertices at the same time.
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Appendix A. The stationary scattering states

In this appendix we recall briefly how the stationary scattering states are constructed [1]. We
consider the stationary scattering stateψ(α)(x) of energyE = k2 which describes a plane wave
entering the graph from the lead connected at vertex α and being scattered by the graph into
all leads. On the lead connected to vertex µ, the wavefunction is

ψ
(α)

lead µ(x) = δµαe−ikx +�µαeikx, (47)

where x ∈ [0; +∞[. The wavefunction on the internal bond (µβ) of the graph is related to the
two linearly independent solutions fµβ(xµβ) and fβµ(xµβ) of the differential equation

(−d2
xµβ

+ V(µβ)(xµβ)− k2)f (xµβ) = 0 (48)

for x ∈ [0; lµβ]. The two solutions fµβ and fβµ satisfy the following boundary conditions at
the edges of the interval:

fµβ(µ) = 1

fµβ(β) = 0
and

fβµ(µ) = 0

fβµ(β) = 1
(49)
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where f (µ) ≡ f (xµβ = 0) and f (β) ≡ f (xµβ = lµβ). The stationary scattering state on the
bond (µβ) is

ψ
(α)

(µβ)(xµβ) = ψ(α)µ fµβ(xµβ) + ψ(α)β fβµ(xµβ) (50)

which already satisfies the continuity condition (2). The relation between the functions fµβ and
fβµ and the reflection and transmission coefficients characterizing the potential on the bond
is established by computing the derivatives of fµβ and fβµ at the boundaries of the interval.
Imposing the ‘current conservation’ (3) then leads to the expressions (11)–(13), that permit a
systematic construction of the scattering matrix [1].

Appendix B. Friedel sum rule and Smith relation in one dimension

The one-dimensional case can be considered as a graph with one bond and two vertices and
can therefore be described with the formalism presented in [1] and this paper. The FSR
(16) has been demonstrated in general terms in [15]; however, it is interesting to give a rapid
demonstration that follows the lines of the original one in three dimensions [14,16,20,21]. Note
also that it has been demonstrated in [36] that the Friedel phase in a one-dimensional situation
is related to the phase of the transmission amplitude (see also [30]). We consider the one-
dimensional Hamiltonian −d2

x + V (x) with x ∈ R with a potential V (x) being concentrated
in some region of the space. We start by describing several possible bases of eigenstates
characterizing the scattering problem.

• The stationary scattering states of energy E = k2 related to the scattering matrix

�̃ =
(
r̃ t̃ ′

t̃ r̃ ′

)
(51)

are the state ϕ(L)(x) associated with a plane wave coming from the left and ϕ(R)(x) for an
incoming wave from the right. The asymptotic behaviours of the left stationary scattering
state are ϕ(L)(x) = eikx + r̃ e−ikx for x → −∞ and ϕ(L)(x) = t̃ eikx for x → +∞. The
state ϕ(R)(x) involves similarly the coefficients r̃ ′ and t̃ ′. Note that these states can be
introduced even if the potential is not concentrated in a finite interval provided that it
decreases sufficiently rapidly at infinity.

• If the potential has a support [x1; x2] we introduce the stationary scattering states ψ(L)(x)
and ψ(R)(x) related to the scattering matrix�: the left stationary scattering state behaves
like ψ(L)(x) = eik(x−x1) + r e−ik(x−x1) for x � x1 and ψ(L)(x) = t eik(x−x2) for x � x2. A
similar expression forψ(R)(x) involves the coefficient r ′ and t ′: ψ(R)(x) = t ′e−ik(x−x1) for
x � x1 andψ(R)(x) = e−ik(x−x2)+r ′ eik(x−x2) for x � x2. The reflections and transmissions
defined in this way are naturally involved in transfer matrices, which makes for part of the
interest of this definition.
Comparing the two sets of eigenstates it is clear that ϕ(L)(x) = eikx1ψ(L)(x) and
ϕ(R)(x) = e−ikx2ψ(R)(x). The relations between the coefficients of the two scattering
matrices �̃ and� are then r = r̃ e−2ikx1 , r ′ = r̃ ′ e2ikx2 , t = t̃ eik(x2−x1) and t ′ = t̃ ′ eik(x2−x1).
The relation between matrices reads � = U�̃U with U = diag(e−ikx1 , eikx2).

• To derive the FSR we introduce the two eigenstates of energy E = k2 labelled by the
index σ = 1, 2:

7σ(x) = [aσ,+ θ(x) + aσ,− θ(−x)] sin(k|x| + ησ (k
2) + π/2) for |x| → ∞, (52)

where θ(x) is the Heaviside function. If the potential is symmetric the two amplitudes
aσ,+ and aσ,− are equal in modulus and σ = 1, 2 labels the symmetric and antisymmetric
states. Let us establish the relation with the 2 × 2 scattering matrix �̃. We look for
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the relation between this basis of eigenstates and the first basis introduced above: let us
write 7σ(x) = ϕ(R)(x) + C ϕ(L)(x). Comparing their behaviours at x → +∞ we obtain
r̃ ′ + C t̃ = e2iησ and at x → −∞: t̃ ′ + C r̃ = C e2iησ . These two equations show that
e4iησ − (r̃ + r̃ ′)e2iησ − t̃ t̃ ′ + r̃ r̃ ′ = 0. In other terms,

det(�̃ − e2iησ ) = 0. (53)

Therefore e2iη1 and e2iη2 are the two eigenvalues of the scattering matrix �̃. To finish the proof
of the FSR we consider that the system is in a large interval [−R; +R] and impose Dirichlet
boundary conditions. The quantification condition for7σ(x) reads knR +ησ (k2

n)+π/2 = nπ .
We introduce δkn = kn+1 − kn, therefore in the limit R → ∞

1

δkn
� R

π
+

1

π

dησ (k2
n)

dkn
(54)

which is the density of modes in the channel σ . The term R/π is the density of modes in the
absence of the potential: 1/δk(0)n . In the limit R → ∞ the difference of densities of modes
1/δkn − 1/δk(0)n remains finite. It follows that∫ +∞

−∞
dx [ρ(x;E)− ρ0(x;E)] = 1

π

∑
σ=1,2

dησ (E)

dE
(55)

where ρ(x;E) = 〈x |δ(E − H)|x 〉 is the LDoS and ρ0(x;E) the LDoS in the absence of
the potential. Due to (53) this equation can be rewritten

∫ +∞
−∞ dx [ρ(x;E) − ρ0(x;E)] =

(1/2iπ)Tr{�̃†d�̃/dE}.
Next we would like to apply both the FSR and the Smith formula to a simple example.

We now consider a potential with support [0; L] that vanishes elsewhere, a situation where it
is meaningful to introduce � (instead of �̃).

(i) The Smith formula (27) gives the DoS of the interval [0; L]∫ L

0
dx ρ(x;E) =

∫ L

0
dx (|ψ̃(L)E (x)|2 + |ψ̃(R)E (x)|2)

= 1

2iπ

(
Tr

{
�† d�

dE

}
+

1

4E
Tr{� −�†}

)
. (56)

The two terms correspond to left (L) and right (R) stationary scattering states, which form a
complete basis of eigenstates in one dimension. Note that this relation has also been given
in [28] for the one-dimensional case.

(ii) On the other hand the FSR∫ +∞

−∞
dx [ρ(x;E)− ρ0(x;E)] = 1

2iπ

(
Tr

{
�† d�

dE

}
− i L√

E

)
= 1

2iπ
Tr

{
�̃† d�̃

dE

}
(57)

measures the variation of the DoS of the infinite line due to the presence of the potential in the
interval [0; L]. In particular (57) is sensitive to the effect of the potential on the wavefunction
at infinity whereas (56) is a local quantity.

As an illustration, let us consider the extremely simple case of a potential λδ(x) on a line.
The corresponding graph is a vertex (V = 1, B = 0 and L = 2). Formulae (6)–(8) give the
scattering matrix

� = 2

2 + iλ/k

(
1 1
1 1

)
− 1. (58)

It is easy to check that (56) therefore vanishes

Tr

{
�† d�

dE

}
+

1

4E
Tr

{
� −�†

} = 0, (59)
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which is not surprising since the ‘graph’ is only a point (the support of the potential is an
interval of measure 0). On the other hand the variation of the DoS of the infinite line can be
computed either with the exact Green function, known for this potential, or with (57). The
Green function gives∫ +∞

−∞
dx [ρ(x;E)− ρ0(x;E)] = θ(−λ)δ(E + λ2/4)− 1

2
δ(E) + θ(E)

λ

4π
√
E

1

E + λ2/4
,

(60)

where θ(E) is the Heaviside function. The first term is the contribution of the bound
state (that exists if λ < 0). We can check that the total number of states is conserved:∫ +∞
−∞ dE

∫ +∞
−∞ dx [ρ(x;E) − ρ0(x;E)] = 0. The Friedel phase, obtained from the above

scattering matrix, is δf (E) = −i ln det� = 2 arctan(2k/λ) and we can therefore recover the
expression (60) using the FSR (57).

Appendix C. The spectrum of the complete graph KV

We give here the spectrum of the complete graph, which is made of V vertices all connected to
each other with bonds of the same length /. The spectrum is easily extracted from the spectral
determinant S(−k2) = ∏∞

m=0(Em − k2), which has been computed in [7]:

S(−k2) ∝
(

sin k/

k

) V (V−3)
2

sin2(k//2) (cos k/ + cosϕ)V−1 (61)

up to some inessential numerical factor. The parameters λα that characterize the boundary
condition (3) are put to zero here. We have introduced cosϕ = 1/(V − 1). The energies Em
and the corresponding degeneracies dm are given in the following table:

km = √
Em dm

k0 = 0 1

k1 = π − ϕ

/
V − 1

k2 = π

/

V (V − 3)

2

k3 = π + ϕ

/
V − 1

k4 = 2π

/
2 +

V (V − 3)

2
...

...

It is obvious from the expression of the spectral determinant that the spectrum is periodic
in k of period 2π//, that is km+4 = km + 2π// and dm+4 = dm (for m > 0).

We next consider the corresponding eigenfunctions. The eigenfunction on the bond (αβ)
is given by (50)

ψ(αβ)(x) = 1

sin klαβ
(ψα sin k(lαβ − x) + ψβ sin kx). (62)

Imposing the conditions (3) leads to the V equations∑
β

Mαβψβ = 0. (63)
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Figure C1. The two eigenstates of K4 of energy k = k2. The dotted lines are the bonds and
the large dots the vertices (labelled 1, 2, 3 and 4). The thick continuous lines are put where the
wavefunction is positive and the thick dashed lines where it is negative. On the other bonds the
wavefunction vanishes.
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Figure C2. The four eigenstates of energy k = k4.

For a free graph M is given by (14) [2]. For the complete graph we have

Mαβ(−k2) = i

sin k/
(δαβ(V − 1) cos k/− aαβ) (64)

where the adjacency matrix is aαβ = 1 − δαβ .

• Zero mode. The wavefunction is constant on the graph ψ(0)(x) = 1/
√

L where
L = [V (V − 1)/2]/ is the total length of the graph.

• k = k1. All the matrix elements ofM are equal: Mαβ = −I/ sin ϕ. The equation (63) has
V −1 solutions labelled by j = 1, 2, . . . , V −1. A possible basis isψ(1,j)α = δα,1 −δα,j+1,
up to a normalization (this basis is not orthogonal).

• k = k2. At this energy the matrix M is divergent and equation (63) cannot give the
eigenstates. They are obtained by considering the equation (1 − RQ)A = 0, where R
and Q are the matrices given by (5)–(8). A is the vector gathering the 2B amplitudes of
the wavefunction (one for each arc) [1, 7]. The system (1 − RQ)A = 0 has V (V − 3)/2
solutions at k = k2. To obtain an idea of the structure of the solution let us consider K4.
We label the nodes by 1, 2, 3 and 4, and we bring together the six components on the six
bonds in a vector 7(x) = (ψ(12)(x), ψ(13)(x), ψ(14)(x), ψ(23)(x), ψ(24)(x), ψ(34)(x)). We
have for the first state, labelled (2, 1), 7(2,1) = (1, 0,−1,−1, 0, 1)× sin(πx//), and for
the second eigenstate 7(2,2) = (0, 1,−1,−1, 1, 0)× sin(πx//) (see figure C1).

• k = k3. The matrix M is the opposite to that computed at k = k1 and the wavefunctions
on the nodes have the same value as for this latter energy.

• k = k4. The same problem occurs as for k = k2. The system (1 − RQ)A = 0
has V (V − 3)/2 + 2 solutions corresponding to wavefunctions vanishing at all the
nodes. Again we consider the graph K4 and give the four degenerate states: 7(4,1) =
(0, 0, 0,−1, 1,−1)× sin(2πx//), 7(4,2) = (0,−1, 1, 0, 0,−1)× sin(2πx//), 7(4,3) =
(−1, 0, 1, 0,−1, 0) × sin(2πx//) and 7(4,4) = (−1, 1, 0,−1, 0, 0) × sin(2πx//) (see
figure C2).
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• k = km>4. The spectrum is periodic in k with period 2π//. Then the value of the
wavefunctions at the nodes is the same at km and km+4; only the number of oscillations on
the bonds changes.
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